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ABSTRACT

MORRIS, T. P., A. BURZYNSKA,M.VOSS, J. FANNING, E. A. SALERNO, R. PRAKASH, N. P. GOTHE, S.WHITFIELD-GABRIELI,

C. H. HILLMAN, E.MCAULEY, and A. F. KRAMER. Brain Structure and Function Predict Adherence to an Exercise Intervention in Older

Adults.Med. Sci. Sports Exerc., Vol. 54, No. 9, pp. 1483-1492, 2022. Introduction: Individual differences in brain structure and function in

older adults are potential proxies of brain reserve or maintenance and may provide mechanistic predictions of adherence to exercise. We hypoth-

esized that multimodal neuroimaging features would predict adherence to a 6-month randomized controlled trial of exercise in 131 older adults

(age, 65.79 ± 4.65 yr, 63% female), alone and in combination with psychosocial, cognitive, and health measures.Methods: Regularized elastic

net regression within a nested cross-validation framework was applied to predict adherence to the intervention in three separate models (brain

structure and function only; psychosocial, health, and demographic data only; and amultimodal model).Results:Higher cortical thickness in somato-

sensory and inferior frontal regions and less surface area in primary visual and inferior frontal regions predicted adherence. Higher nodal functional

connectivity (degree count) in default, frontoparietal, and attentional networks and less nodal strength in primary visual and temporoparietal networks

predicted exercise adherence (r = 0.24,P = 0.004). Survey and clinical measures of gait andwalking self-efficacy, biological sex, and perceived stress

also predicted adherence (r = 0.17, P = 0.056); however, this prediction was not significant when tested against a null test statistic. A combined

multimodal model achieved the highest predictive strength (r = 0.28, P = 0.001). Conclusions: Our results suggest that there is a substantial

utility of using brain-based measures in future research into precision and individualized exercise interventions older adults. Key Words:

AGING, FUNCTIONAL CONNECTIVITY, BRAIN RESERVE, PREDICTION, MACHINE LEARNING, AEROBIC EXERCISE
Physical activity and structured exercise have received a
lot of attention as potential efficacious interventions to
improve or maintain brain health with advancing age

(1). Despite millions of government and private dollars being
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spent on understanding how physical activity can improve or
maintain brain function across the life span, over a third of the
U.S. population do not engage in sufficient physical activity
(2), a statistic that continues to increase (2). This physical inac-
tivity pandemic (3) is estimated to cost private and public health
care systems $53.8 billion per year and a further $13.7 billion in
productivity losses due to physical inactivity-related deaths
each year (4).

Previous research on understanding the adoption and main-
tenance of physical activity has leveraged psychological and
psychosocial theories (5). In experimental studies, several psy-
chosocial, behavioral, and demographic measures were shown
to correlate with exercise adherence, such as self-efficacy (6),
self-regulation (7), social support, perceived benefits and bio-
logical sex (males adhered more than females) (8), higher base-
line physical activity outside the intervention (9), and depres-
sion, fatigue, and general perceived health (10). Additionally,
. Unauthorized reproduction of this article is prohibited.
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greater cognitive resources, particularly executive functions,
known to depend on cortical structural integrity (11), have been
associated with engagement in exercise (12,13). Although
theory-based programs are generally successful, optimizable,
and adaptable, precision medicine approaches will improve
the cost efficiency of interventions and health outcomes for in-
dividuals who show poor adherence to one-size-fits-all ap-
proaches. That is, predicting from a set of variables, who is
more or less likely to adhere to an intervention from the outset,
will allow the practitioner to provide alternative and individu-
alized interventions before individuals having to either dem-
onstrate poor adherence or present with deteriorating health.

Within the intervention setting, several recent studies have
demonstrated that preintervention brain structure, known to
be critical in supporting executive functions (11), is associated
with individual differences in adherence to exercise interven-
tions. Specifically, regions of the prefrontal, temporal, and so-
matosensory cortices have been associated with adherence to
each respective exercise intervention (14,15). Relatedly, sev-
eral reviews and observational studies have suggested that
the relationship between exercise and the brain is bidirectional
(13,16). This hypothesis leverages the concepts of cognitive
reserve and brain maintenance (17), such that there is a circular
nature between greater cognitive and brain resources and
higher participation in complex exercise behaviors, which in
turn helps with the maintenance and upkeep of cognitive and
brain health. Although rarely measured directly, proxy mea-
sures of brain reserve and brain maintenance include brain
structure and brain functional connectivity (for a review, see
Stern et al. [17]). In terms of function, numerous applications
of functional and anatomical connectivity have led to the ob-
servation that the brain is organized into large-scale functional
networks (18). A number of these networks, such as the
frontoparietal control network (FPCN), the default mode net-
work (DMN), and the dorsal attention network (DAN), change
with age (19) and are thought to be particularly important in
age-related cognitive decline (20). These networks also subserve
internally and externally directed cognition (21), including
broadly defined executive function. Given the heterogeneity
of these brain networks and their importance in higher-order
cognition, individual patterns of functional connectivity in
older adults may be predictive of exercise adherence. Indeed,
prior studies on mindfulness and meditation have demonstrated
that functional connectivity within the DMN and in frontal and
temporal nodes are strong predictors of adherence (22).

The term “prediction” is used in several ways in the litera-
ture and can commonly refer to either the correlation of one
variable in a group at one point in time with another variable
in that same group at another point in time (within-sample cor-
relation), or it can refer to a generalizable model that makes
predictions on out-of-sample participants (23). Prior studies
on psychosocial and behavioral “predictions” of exercise ad-
herence have typically used correlation and therefore their re-
sults are likely overly optimistic (24). This overestimation and
poor generalizability is compounded further when one con-
siders they only explain relatively small amount of variance
1484 Official Journal of the American College of Sports Medicine
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(<20%) in adherence (25,26). Consequently, calls have been
made to introduce prediction statistics into psychological and
cognitive neuroscience research to improve the generalizabil-
ity of the results, specifically when using brain-based metrics
(23). In the case of exercise interventions, for example, being
able to successfully predict adherence to exercise interventions
with generalizable results before engagement in the interven-
tion would allow for the optimization or individualization of
an alternative intervention for those who are predicted to poorly
adhere. For example, providing those who are predicted to ad-
here poorly with a health coach (27) or just-in-time messaging
(28) paves the way toward efficacious precision medicine ap-
proaches in health-based settings, when time can rarely be lost,
and cost efficiency is of upmost importance. This is also impor-
tant as engagement in effective exercise interventions may lead
to the successful maintenance of physical activity after cessa-
tion of the intervention (29), and so predicting adherence to
the exercise intervention may also provide insights into sus-
tained exercise behaviors. Moreover, if brain-based metrics
are shown to predict adherence, they can then provide mecha-
nistic understanding of this complex behavior. Under the Na-
tional Institutes of Health stage model of intervention develop-
ment, such information could then be leveraged to design novel
interventions that improve exercise adherence by targeting cer-
tain predictive mechanisms and testing whether their modula-
tion improves adherence.

In a secondary analysis of data from a randomized control
trial of exercise in older adults, the objectives of this study were
to predict adherence to a 6-month exercise intervention and an
active control in a structured and supervised group-based inter-
vention. We hypothesized that multiple metrics of brain struc-
ture and function in FPCN, DMN, and DAN and regions (pre-
frontal, temporal, and parietal) would predict adherence to the
exercise intervention and that these measures would augment
traditional behavioral and psychosocial measures. To test this,
we used a whole-brain, data-driven machine learning approach.

METHODS

Participants

This study is a secondary analysis of data from participants
who participated in a 6-month randomized controlled exercise
trial (clinical study identifier: NCT01472744, November 16,
2011). The study procedures were approved by the University
of Illinois Institutional Review Board, and written informed
consent was obtained from all participants before any research
activities. Healthy but low-active older adults were recruited in
Champaign County, Illinois. Two hundred and forty-seven
(169 women) low-active older adults met the inclusion criteria
for the initial clinical trial, of which 165 underwent structural
and functional magnetic resonance imaging (MRI) at baseline,
before any involvement in intervention sessions, and 131 had
complete data across all variables and were included in this
analysis (see further exclusion criteria based on adherence be-
low). Participants in the initial trial were randomized to one of
four intervention conditions: a walking intervention, the same
http://www.acsm-msse.org
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walking intervention plus a dietary supplement designed to en-
hance lean muscle mass, a dancing intervention, and an active
control consisting of a stretching and toning intervention. All
intervention groups met for approximately 1 h, three times per
week for 6 months, and for the purpose of this analysis, we an-
alyzed our main outcome (adherence) with all four conditions
combined. A one-way ANOVA revealed no significant differ-
ences in adherence between the conditions (F1,129 = 1.11,
P = 0.294), and no significant differences in baseline character-
istics between conditions existed (see Table S1, Supplemental
Digital Content 1, Demographics stratified by group assign-
ment, http://links.lww.com/MSS/C597). Further, we replicate
the pattern results in the most common intervention condition
(walking) only as a sensitivity analysis with a reduced sample
size (n = 59) to ensure our results were not affected by condi-
tion assignment (see Table S2, Supplemental Digital Content
2, Prediction models in the walking and walking + group only,
http://links.lww.com/MSS/C598). Initial inclusion criteria in-
cluded being between the ages of 60 and 80 yr old; free from
psychiatric and neurological illness, including no history of
stroke, transient ischemic attack, or head trauma; scored >23
on the Mini-Mental State Exam, >21 on a Telephone Inter-
view of Cognitive Status questionnaire, and <10 on the Geri-
atric Depression Scale; at least 75% right-handed based on
the Edinburgh Handedness Questionnaire (a criterion related
to functional magnetic resonance imaging (MRI) analyses);
demonstrated normal or corrected-to-normal vision of at least
20/40 and no color blindness; screened for safe participation in
an MRI environment (e.g., no metallic implants that could in-
terfere with the magnetic field or cause injury and no claustro-
phobia); and reported to have participated in no more than two
bouts of moderate exercise per week within the past 6 months
(with the goal of recruiting low-active older adults). Table 1
contains complete characterization of the study participants in-
cluded in this analysis. All methods were carried out in accor-
dance with the Declaration of Helsinki.
Adherence

Our primary outcome, adherence, was modeled as percent-
age attendance to the weekly intervention sessions. These su-
pervised sessions were scheduled three times per week and
lasted approximately for 1 h. The number and the frequency of
the sessions were consistent across all four conditions. For this
analysis, participants (n = 34) who dropped out of the study
(i.e., did not complete the intervention) were excluded, as were
those who failed to attend at least half of the intervention sessions
TABLE 1. Participant characteristics.

N 131
Age, mean ± SD 65.79 ± 4.65
Gender: female (%) 63 (71.6)
Race (%)

White 79 (89.7)
African American or Black 7 (8)
Asian 2 (2.3)

Years of education, mean ± SD 15.89 ± 2.66
Adherence (%) 81 (12)

PREDICTING ADHERENCE TO EXERCISE

Copyright © 2022 by the American College of Sports Medicine
(n = 12) as our aimwas to capture and predict variations in adher-
ence to the entire 6-month intervention.
Psychosocial, Physical Function and Activity, Health,
and Cognitive Features

A comprehensive battery of psychosocial, physical, and
cognitive assessments was completed by each participant
preintervention. A complete table of these assessments is found
in Table S3 (see Supplemental Digital Content 3, Complete list
of behavioral variables, http://links.lww.com/MSS/C599). Eighty-
four assessments were initially included in this analysis. In
brief, these assessments included self-reported psychosocial
questionnaires gauging participants self-efficacy (global, exer-
cise, and gait self-efficacy), leisure time activity, perceived
sleep quality, anxiety, depression and self-worth/esteem, bar-
riers to exercise, self-regulation, stress, loneliness, and subjec-
tive memory. All psychosocial measures were taken at week 1
or in some instances repeated at week 3. A set of physical
function tests were also collected at week 1, which included
a stair climb test, arm curl, sit and reach, and back scratch.
Seven days of accelerometry capturing objective measures of
time spent sedentary, time spent in light or moderate to vigor-
ous aerobic physical activity, and average daily step counts
were also collected. The procedures to capture, preprocess,
and validate these measures can be found in a previous publi-
cation (30). A measure of cardiorespiratory fitness from a
complete cardiopulmonary exercise test was also included as
were measures of body composition (see our previous work
[31] for a detailed description of the methodology of these
measures). Finally, a battery of neuropsychological tasks were
completed in week 1, which included numerous assessments
of vocabulary, abstract, inductive and visuospatial reasoning,
memory, and perceptual speed, taken from the Virginia Cog-
nitive Aging Project (32). Intervention condition assignment
was also included as a feature.
Neuroimaging Features

Magnetic resonance imaging: acquisition. Partici-
pants undertook an MRI scanning session in a 3T Siemens
Trio Tim system with a 12-channel head coil before the inter-
vention. High-resolution structural MRI scans were acquired
using 3D MPRAGE T1-weighted sequences (repetition
time = 1900ms, echo time = 2.32ms, inversion time = 900ms,
flip angle = 9°, matrix = 256 � 256, field of view = 230 mm,
192 slices, resolution = 0.9� 0.9� 0.9 mm; GRAPPA accel-
eration factor 2). T2*-weighted resting state echo-planar imag-
ing data were obtained with the following parameters: 6 min,
repetition time = 2 s, echo time = 25 ms, flip angle = 80°,
3.4 � 3.4 mm2 in-plane resolution, 35 4-mm-thick slices ac-
quired in ascending order, Grappa acceleration factor = 2,
64� 64 matrix). Structural and resting state functional images
were acquired with these scanning parameters, and the prepro-
cessing and analyses of each respective modality are outlined
in the following two sections.
Medicine & Science in Sports & Exercise® 1485
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Structural MRI preprocessing and analyses. Corti-
cal reconstruction and image segmentation and estimation of
the cortical surface models were performed using the freely
available FreeSurfer software v.5.3 (http://surfer-nmr.mgh.
harvard.edu/). For the preprocessing of the cortex, a three-
dimensional surface model was created using the “recon-all”
surface-based stream. Automated Talairach transformation and
intensity normalization were followed by nonbrain tissue re-
moval, tessellation of the gray and white matter boundary,
and automated topology correction. Finally, surface deforma-
tion enabled the detection of tissue boundaries: gray–white
and gray–CSF borders. The cortical surfaces were then in-
flated and registered to a spherical atlas that used individual
cortical folding patterns to match cortical geometry across par-
ticipants. Cortical thickness was calculated at each vertex in
the cortex as a measure of the distance between the white and
the pial surfaces, and cortical surface area was calculated by aver-
aging the area of all faces that meet at a given vertex on the white
matter surface.We chose to analyze cortical thickness and surface
area separately given their genetic independence and sensitivity to
clinical and aging outcomes (33). Automatic labeling per the
Desikan–Killiany cortical parcellation scheme was performed,
and average cortical thickness and cortical surface area were cal-
culated within each parcellation, resulting in 136 structural fea-
tures (68 features per modality) to be used for feature selection.

Resting state functional connectivity preprocess-
ing and analyses. Preprocessing of the functional resting
state data was performed using the CONN-toolbox v.19c (34),
relying upon SPM v.12 (Wellcome Department of Imaging
Neuroscience, UCL, London, UK) in MATLAB R2019a
(The MathWorks Inc., Natick, MA). The default preprocess-
ing pipeline implemented in CONN was performed, which
consists of the following steps: functional realignment and
unwarping, slice timing correction, outlier identification, seg-
mentation (into gray matter, white matter, and cerebrospinal
fluid tissue), and normalization into the standard Montreal
Neurologic Institute space with 2-mm isotropic voxels for
functional data and 1 mm for anatomical data, using fourth-
order spline interpolation. Finally, functional scans were spa-
tially smoothed using a 6-mm Gaussian kernel. During the
outlier detection step, acquisitions with framewise displace-
ment above 0.9 mm (per several prior publications in studies
with older adults who are more susceptible to movement
within the scanner) (35–37) or global BOLD signal changes
above 5 SD were flagged as potential outliers using the Artifact
Detection Tools (www.nitrc.org/projects/artifact_detect). Two
participants were removed from the final analyses for having
>40 volumes flagged. This cutoff was determined based on pre-
serving at least 5 min of scanning time (38). Additionally, mean
framewise displacement was calculated via the Jenkinson
method and regressed out of the final analysis (see Statistical
analysis section). This was done to be overconservative given
that previous studies have shown a high degree of motion–
behavior correlations (39), despite the fact that no motion vari-
able was significantly correlated with adherence outcomes in
our study (all P > 0.1). Denoising of the functional data was
1486 Official Journal of the American College of Sports Medicine
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performed using a component-based correction method,
CompCor (40), and temporal band-pass filtering (0.01–0.1 Hz)
to remove physiological, subject-motion, and outlier artifacts.
Linear regression was used to remove the effects of these artifacts
on the BOLD time series for each voxel and each subject con-
sidering noise components from voxels within white matter
and cerebrospinal fluid, estimated subject-motion parameters
(three rotation and three translation parameters and six other
parameters representing their first-order time derivatives),
scrubbing, and constant and first-order linear session effects.

To prepare the functional data for feature selection, we
parcellated the functional scans into a medium resolution
300-region (node) atlas with a 17-network parcellation scheme
(41). A medium resolution parcellation was chosen to strike a
balance between having sufficient dimensionality to capture
predictive information within the functional connectivity matrix
and having too many dimensions that would create a very large
search space for the subsequent model building described be-
low. Mean BOLD activity was calculated within each node
and transformed into a 300 � 300 correlation matrix where
the time series at each node was correlated with that of every
other node. This matrix then underwent Fisher’s Z transforma-
tion. Functional brain connectivity was summarized using de-
gree count, a graph theory metric that represents whole-brain
connection density for each node, per a previous publication
(42). This metric reduces the dimensions of the functional con-
nectivity data into a sparse matrix that better represents real-
world graphs (43). Degree count for each participant was calcu-
lated at several thresholds using a fixed network cost (keeping
the strongest 15%, 20%, and 25% of connections), and a final
threshold was chosen through cross-validation (see Statistical
analysis section). Degree count at each node here represents a
single measure of the sum of connections between that node
and every other node in the cortex characterizing its degree of
connectedness within the cortical gray matter.

Power Analysis

We performed a power analysis (in R using the “pwr” pack-
age) on our sample size to ensure sufficient power was gained
to detect a true effect. Based on our sample size (n = 131) and
an assumed type I error rate of 0.05, we calculated an estimated
96% power to detect an effect size of 0.22 from a general linear
model with 38 covariates (multimodal model). In the reduced
sample size of n = 59 for the sensitivity analysis (see Table S2,
Supplemental Digital Content 2, Prediction models in the walk-
ing and walking + group only, http://links.lww.com/MSS/
C598), this power fell to 60% for the same effect size.

Statistical Analysis

To predict adherence to the exercise interventions, we used
elastic net regression, a regularized (penalized) regression
method within a nested cross-validation procedure. Elastic
net is a data-driven machine learning regression method that
applies a penalty term to each variable (feature) coefficient
in the model, resulting in the shrinkage of that coefficient’s
http://www.acsm-msse.org
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value. This penalty term is a function of the overall weight of a
given feature in a model and serves to improve the generaliz-
ability of the model results when applied to new data. Elastic
net aims to avoid overfitting (a problem in statistics that leads
to poor generalizability of study results) by producing less
complex models by applying both L1 and L2 norm penalties
to calculate the coefficients of each feature. Elastic net is a lin-
ear combination of both Ridge regression (L2 norm) and least
absolute selection and shrinkage operate (Lasso) regression.
The L1 penalty shrinks coefficients toward zero (Ridge). The
L2 penalty, in the case of features that have no predictive
value, shrinks their coefficients to exactly zero (Lasso), relative
to the maximum likelihood estimates, effectivity removing
them from the model. The predictors with nonzero coefficients
are therefore interpreted as those that contained predictive infor-
mation and contributed to the final model of predicting the out-
come. This model is particularly useful in cases where corre-
lated features are present (i.e., neuroimaging features and some
psychosocial measures) as the combination of both L1 and L2
penalties will maintain groups of correlated features in the
model (whereas the L1 penalty [Lasso] alone would remove
all but one of the correlated features). The amount of shrinkage
is determined via tuning of two hyperparameters λ1 and λ2,
whereby via a grid search approach the optimal combination
of penalties is “tuned” by running the models over and over
and assessing the predictive performance at each level of the
penalty. Results of the optimal hyperparameters for each model
are found in Table 3. In this analysis, we used a nested cross-
validation procedure where the data set is split into a 10-fold
outer loop (to evaluate model performance) and a 10-fold inner
loop (to tune the hyperparameters using grid search within each
inner fold). Nested cross-validation avoids optimization bias
that simple cross-validation could potentially suffer from when
using the same folds to both tune the hyperparameters and test
the prediction performance. In this case, the folds were kept
consistent across each model by setting the same random seed,
and all variables were centered and scaled within each inner
loop and applied to the outer folds. Cross-validation is an im-
portant step in prediction modeling whereby the predictive per-
formance of a model is assessed on left-out data (a model is
trained in n − 1 folds and tested on the left-out fold in an itera-
tive fashion), resulting in an unbiased measure of the prediction
performance on unseen data. This step overcomes the issues of
simple multiple linear regression whereby a good model (fit to
the whole data set) may not be a good predictive model when
applied to new data, resulting in generalizability issues.

First, to select the optimal degree threshold of the functional
connectivity metric to use in the final models, functional
connectivity–only models were trained over each threshold den-
sity separately, and the model that predicted the left-out outer
folds with the smallest root-mean-squared error (RMSE) was
selected to be used in the final models (for full results from this
analysis, see Table S4, Supplemental Digital Content 4, Opti-
mal degree count threshold, http://links.lww.com/MSS/
C600). To reduce the features used in the final models, a selec-
tion by filtering approach was taken within the same cross-
PREDICTING ADHERENCE TO EXERCISE
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validation folds used in the final models to keep test and train
data separate and to reduce overfitting. Here, features that did
not correlate with the outcome at P < 0.05 within each fold
were removed from the final feature set. Age, biological sex,
and mean framewise displacement (functional connectivity
only) were regressed out of the features. Three separate models
were trained: 1) imaging features only; 2) psychosocial, physi-
cal function and activity, health, and cognitive features only;
and 3) multimodal features containing all features. In the case
of model 2, the combination of nested cross-validation and elas-
tic net failed to predict adherence in the left-out outer folds, po-
tentially because of the small number of features in the model
(P = 6), and as such, for the nonimaging model only, we ran
a simple 10-fold cross-validation model using Ridge regression
(L1 norm penalty only). We provide several interpretable mea-
sures of model performance (prediction on the left-out folds)
based on the observed versus predicted values: Pearson’s r cor-
relation; squared correlation; R2; RMSE, which measures the
average prediction error as the average difference between the
observed and the predicted values; and the mean absolute error
(MAE) as the average absolute difference between the observed
and the predicted values. RMSE and MAE are related with
MAE being less sensitive to outliers, and the lower the value,
the better the model performance. To assess the significance
of the prediction performance, 10,000 nonparametric permuta-
tions were performed on the correlation coefficient between
the predicted and the observed values, consistent with the fMRI
literature (44). Here, the outcomemeasure is randomly assigned
to different subjects, and by using this new label assignment
10,000 times, we estimated the distribution of the test statistic.
The P value of the permutation tests was then calculated as
the proportion of sampled permutations that are greater or equal
to the true prediction correlation (see Fig. S1, Supplemental
Digital Content 5, Significance testing of the prediction perfor-
mance, http://links.lww.com/MSS/C601). All statistics were
performed in RStudio version 3.6.3 using “caret,” “dplyr,”
“purr,” “penalized,” and “pensim” packages. Figures were gen-
erated using “ggplot2.” Code used in this analysis can be found
at https://github.com/tpmor-546/Adherence_pred.
RESULTS

Table 1presents demographic details of the participants included
in this analysis. Our sample consisted of mostly female, white,
and educated participants, and the mean adherence was 81%.

Table 2 contains prediction metrics for each modality using
elastic net models and ridge regression for the psychosocial/
cognitive/health only model. The psychosocial and demographic
model did not significantly predict adherence (r = 0.17,
P = 0.056). The imaging (r = 0.24, P = 0.004) and multimodal
models (r = 0.28, P = 0.001) did significantly predict adher-
ence (Table 2 and Fig. 1).

Standardized coefficients for each feature selected in each
model are found in Table 3. A summary figure of the multi-
modal model is found in Figure 2. For the functional connec-
tivity features, higher nodal degree strength in lateral and
Medicine & Science in Sports & Exercise® 1487
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TABLE 2. Model performance metrics.

Model r R 2 RMSE MAE P

Multimodal 0.28 0.08 0.11 0.09 0.001
Imaging 0.24 0.06 0.11 0.09 0.004
Psych/cog/health 0.17 0.03 0.12 0.10 0.056

Performance metrics derived from nested cross-validation where the optimal
hyperparameters for elastic net regression were tuned in an inner loop and used to predict
adherence in the left-out outer loop. r and R2 represent the Pearson’s correlation and the
squared correlation between the predicted and the observed values, respectively. RMSE rep-
resents the average difference between the observed and the predicted values (average pre-
diction error), and MAE represents the absolute mean difference between the predicted and
the observe values. The P value for each model is derived by comparing the correlation co-
efficient between the observed and the predictive values to a null distribution derived from
10,000 nonparametric permutations.
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medial prefrontal regions, spanning both FPCN and DMN,
predicted higher adherence to the intervention. Conversely,
less nodal strength in visual, temporal, and somatomotor
networks predicted higher adherence to the intervention.
Higher cortical thickness in bilateral postcentral gyrus, infe-
rior frontal gyrus of the left hemisphere, and the left frontal
pole predicted higher adherence, whereas lower cortical
thickness in the right cingulate and lower surface area in
bilateral occipital gyrus and left inferior frontal gyrus pre-
dicted higher adherence. Although the psychosocial and
demographic model alone did not significantly predict ad-
herence, those features included in the multimodal model
that was predictive of adherence (given their nonzero coef-
ficient) included self-efficacy for walking, barrier-specific
self-efficacy, strength self-esteem, biological sex, and em-
ployment status (Table 3).
DISCUSSION

In this study, we demonstrated that brain-based measures of
functional connectivity, cortical thickness, and surface area
predicted future adherence to a structured group-based exer-
cise intervention in older adults. Using a machine learning
framework that applies penalized regression with cross-
validation, we also replicated earlier studies indicating that
aspects of self-efficacy and biological sex are predictive of
FIGURE 1—Prediction performance (r) of each model (top row). Top row: r rep
values via elastic net regression with nested cross-validation. The multimodal m
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adherence to exercise and that, together, multimodal features
provide the numerically strongest predictive value.

Currently, our model performance remains far from having
utility in a clinical setting. Although we replicated the finding
that traditional psychosocial and demographic measures predict
adherence to exercise, albeit in a model that was not significant,
the ability of neuroimaging features alone to predict adherence
to a structured group-based exercise intervention suggests a
substantial utility of these measures for future research into pre-
cision medicine and adaptive intervention approaches. Addi-
tionally, the numerical increase in model performance when
combined suggests that multimodal features provide independent
relevant information in the prediction of exercise adherence.
Multimodal prediction models have been shown to outperform
unimodal models in prior work also (42,45). It is possible that
the numerical increase in prediction performance from multi-
modal features is due to individual features capturing distinct as-
pects of complex behaviors linked to adherence to exercise,
which unimodal features alone may not capture. Additionally,
the use of multimodal imaging metrics likely limits the effect of
scanning or preprocessing artifacts from any given modality.
Notwithstanding, although the correlations between predicted
and observed values were higher in the multimodal model,
the absolute difference between the predicted and the observed
values (MAE) between the imagingmodel and the multimodal
model was numerically negligible. Given that the psychologi-
cal, health, and demographic model was not significant when
tested against a null distribution of the test statistic, it is likely
that the imaging features were providing most of the predic-
tive signal.

It is important to highlight simple numerical comparisons
between our results (i.e., R2), and those of prior research on
correlates of exercise adherence should not be compared di-
rectly because of the rigor of prediction modeling compared
with simple within-sample inferential statistics. Our prediction
methodology is implemented with the explicit goal of improv-
ing generalizability to new unseen data (23), whereas prior
studies using within-sample correlational statistics are prone
to biased estimates that may not generalize well to new data.
resents the correlation between the predicted and the observed adherence
odel numerically performed better than the unimodal models alone.
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TABLE 3. Data-driven features.

Psych/Cog/Health Imaging Multimodal

Feature λ1 λ2 λ1 λ2 λ1 λ2

N/A 98.5 0.1 100 0.46 56
lh_extrastriate_centralvisual −0.00048 0.9136
lh_lateralPFC_FPCNa 0.00259 0.00156
lh_lateralPFC_DMNb 0.00572 0.00558
lh_ventralPFC_DMNb 0.00553 0.00572
lh_temporalparietal −0.00687 −0.00765
rh_extrastriatesuperior_perivisual −0.00326 −0.00243
rh_S2_SMb −0.00531 −0.00594
rh_parsopercularis_VANa −0.00522 −0.00332
rh_frontalmedial_VANa 0.00736 0.00632
rh_medialprefrontal_DMNa 0.00635 0.00636
rh_temporalparietal −0.00131 0
rh_temporalparietal −0.00975 −0.0112
lh_parsorbitalis_thickness 0.00512 0.00435
lh_parstriangularis_thickness 0.00169 0.00049
lh_postcentral_thickness 0.00627 0.00779
rh_isthmuscingulate_thickness −0.01194 −0.01149
rh_postcentral_thickness 0.00453 0.00476
rh_frontalpole_thickness 0.00153 0.00104
lh_cuneus_area −0.00218 0
lh_parsorbitalis_area −0.00464 −0.00798
lh_pericalcarine_area −0.00731 −0.00684
rh_lateraloccipital_area −0.00563 −0.04543
Self-efficacy for walking (w3) −0.00073 −0.01009
Barriers self-efficacy (w1) 0.00014 0.00116
Big Five; Conscientiousness 0.00068 0
Avg time in light exercise (7 d) 0.87631 0
Biological sex −0.04877 −0.02005
Strength self-esteem −0.00059 −0.00049
Employment status 0.00861 0.00561

Data-driven features derived from selection by filtering approach within the cross-validation
framework, which were used as initial input features in the elastic net models. Imaging fea-
ture names are constructed as follows: “hemishere_region_network/structural measure.”
Network is derived from the 17-network cortical parcellation from Yeo et al. (18) via auto-
matic labeling using the Schaefer 300 atlas. Coefficients from each prediction model repre-
sent the standardized and penalized coefficient used to predict Adherence. A value of 0
means that the feature was effectivity removed from the model due to having little or no pre-
dictive value. λ1 and λ2 represent the optimal cross-validated hyperparameters for each
model. λ1 is “N/A” for the psych/cog/health model as simple cross-validation, and ridge re-
gression (L2 norm penalty only) was used to predict adherence as the elastic net with nested
cross-validation failed to find a solution to predict adherence with these features only. Bio-
logical sex was coded as 2 for women and 1 for men (i.e., a negative coefficient means that
men adhered better than women). Employment status was coded as 1–7, with 1 being full
time employed, 2 part time, 3 retired, part time, 4 retired, 5 laid off/unemployed.
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In a research setting, the application of prediction modeling
could aid in the development of adaptive intervention strate-
gies. For example, in those who can successfully engage in a
theory-based intervention, positive results have been shown.
However, successful engagement in long-term interventions
is nontrivial and not all individuals will adhere. If one could
predict these individuals from the outset, the redeployment
of resources to tailor the intervention in these individuals with
the goal of improving adherence and subsequent efficacy could
be done. For example, our results could be leveraged in future
prospective studies to test whether adaptive interventions based
on preintervention characteristic and brain signatures (our pre-
dictions) result in better adherence and intervention efficacy.
Concomitantly, our results provide several testable mechanistic
pathways through which individual differences in brain struc-
ture and function can affect exercise adherence. For example,
if default mode and executive control connectivity are impor-
tant predictors of exercise adherence, then mindfulness medita-
tion training could be used as a primer to enhance network con-
nectivity before or during an exercise intervention, as this has
PREDICTING ADHERENCE TO EXERCISE
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been shown to modulate the connectivity of these networks
(46). Future studies could test whether the modulation of these
measures results in the enhancement of adherence to prospec-
tively test these predictions. Additionally, successful engagement
in an exercise intervention may also be related to the long-term
maintenance of exercise behaviors beyond the intervention
(29). Consequently, applying this type of prediction modeling
to recent large population and cohort studies (e.g., UK Biobank
or Human Connectome Project) with imaging and self-report
physical activity data could help one determine the proportion
and characteristics of individuals who would require additional
tailoring when designing future exercise interventions.

Regarding our imaging analysis, we took a whole-brain ap-
proach to the prediction of exercise. Our results, however, could
be leveraged to validate these results in future hypothesis-driven
studies. For example, nodes with high global functional connec-
tivity predictive of adherence in our studywere found in theme-
dial and lateral prefrontal cortex within the DMN and FPCN
networks, two related networks that contribute to internally
and externally directed cognition (21) and in the implementa-
tion of executive control processes to maintain goals and inhibit
distractions, respectively (47). Similarly, cortical structure in
postcentral and inferior temporal regions has been shown to
be associated with executive functions, especially in healthy ag-
ing (11). As such, direct study of the interplay between these
networks at rest or during executive function tasks that engage
these networks may provide stronger predictive utility.

Numerous randomized controlled trials of exercise in aging
have demonstrated that exercise can improve (with mixed effect
sizes) cognitive function and positively affect brain structure and
functional connectivity (48). More recently, the hypothesized bi-
directional relationship between exercise and brain and cognition
has been tested (13). In our current study, individual differences in
proxymeasures of cognitive and brain reserve (functional connec-
tivity nodes, cortical thickness, and surface area, respectively)
within primary information processing networks and regionswere
predictive of exercise adherence. Prior exercise interventions have
shown intervention-mediated increases in the functional connec-
tivity of somatosensory networks in older adults (49). Our results,
therefore, potentially provide supportive evidence in favor of the
hypothesis that the relationship between exercise and brain is bidi-
rectional (50). Notwithstanding, our prediction models need to be
tested in prospective and experimental studies to conclude a
causal association. Furthermore, these predictions need to be
validated in much larger and more generalizable samples.

Several limitations to this study mean that our results should
be interpreted with reasonable caution. First, the complexity of
adherence to a 6-month exercise intervention may not be
completely captured in a single variable representing the per-
centage attendance to the intervention settings, and so addi-
tional explained variance not captured by our measures may
be due to other reasons such as scheduling conflicts related
to family, work, or breaks due to discomfort. Second, it is of
note that inferential guarantees regarding variable estimates
(coefficients) in penalized regression models cannot be made,
i.e., traditional P values or confidence intervals for each
Medicine & Science in Sports & Exercise® 1489
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FIGURE 2—Summary figure depicting the data-driven features of brain structure and function in the multimodal model (best performing model). For the
functional connectivity features (top left), each feature represents degree count (number of connections that each node has with every other node in the cor-
tical parcellation). That is, red features (positive nodes) are interpreted as the higher the connectivity between that node and every other node in the cortex,
the higher the adherence. Blue features (negative nodes) suggest that the less connections between these nodes and the rest of the brain, the higher the ad-
herence.Mapping these regions to intrinsic resting state functional networks (17 Yeo networks via the Schaefer 300 atlas) reveals a broad pattern of positive
nodes in the DMN and FPCN and negative nodes in primary information processing networks. For cortical brain structure, greater cortical thickness in
bilateral postcentral gyrus and left inferior frontal gyrus and lower cortical surface area in bilateral occipital cortex and left inferior frontal gyrus were pre-
dictive of adherence.
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estimate do not exist (51). Therefore, estimates produced by
the elastic net model are biased and should not be interpreted
as the population parameter. Although advances in
postselection inference methods for the Lasso have been made
(51,52), which allow for more valid confidence intervals and
significance testing for Lasso estimates, such methods do not
exist for elastic net, the use of which was important in our case
given the collinearity of the predictors in our study. Third, our
sample size was relatively small for machine learning. As
such, testing on completely left-out subjects (test–train splits)
was not feasible, and so we attempted to perform the most rig-
orous and generalizable approach possible via nested cross-
validation. Fourth, we implemented a data-driven approach
that used whole-brain imaging measures as features. This ap-
proach could be complimented or enhanced in future research
using task-evoked MRI or network/region-specific measures
to reduce the dimensionality of the input data. Fourth, given
the difficulty and costs associated with this type of research
and the vast number of measures that were available in this
unique data set, the replication of this prediction in a
completely independent validation data set is unavailable at
this moment. Fifth, our participants were homogenous. Sev-
eral factors have recently been highlighted as a reason why
global physical inactivity rates continue to be low (3), with
one being that most of the research on understanding physical
activity behaviors has occurred in high-income countries, and
1490 Official Journal of the American College of Sports Medicine
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so more work in diverse populations and low-income coun-
tries is needed to fully generalize this type of prediction.
Lastly, our battery of neuropsychological tasks included exec-
utive function tests that measured constructs such as abstract,
inductive, and visuospatial reasoning rather than other execu-
tive tasks like inhibitory control that may be more related to
exercise adherence (12).

CONCLUSIONS

Our results showed that the combination of psychosocial,
cognitive, and demographic and multimodal imaging metrics
can predict adherence to an exercise intervention in older
adults and provide independent relevant predictive value. Pro-
spective testing of these predictions and their validation will
allow researchers and eventually clinicians to leverage them
through personalized medicine approaches.

The authors thank Anya Knecht, Susan Houseworth, Nancy Dodge,
Hilly Tracy, Robert Weisshappel, and all of the Lifelong Brain and Cog-
nition and Exercise Psychology Laboratory graduate students and staff
for their help in participant recruitment and data collection.

This work was supported by the National Institute on Aging at the
National Institutes of Health (R37 AG025667).

The authors declare no conflict of interest. The University of Illinois
Institutional Review Board approved all procedures used in the study.
All participants gave written informed consent before participation in
any studyprocedures, all ofwhich conformed to theDeclarationofHelsinki
for research involving human subjects. All authors agree to the contents of
this manuscript and give consent for its publication.
http://www.acsm-msse.org

. Unauthorized reproduction of this article is prohibited.

http://www.acsm-msse.org


The results of this study are presented clearly, honestly, and without
fabrication, falsification, or inappropriate datamanipulation. The results
of the present study do not constitute endorsement by the American
College of Sports Medicine.

T. P.M. and A. F. carried out the conceptualization, design, analysis,
and interpretation of data and wrote the manuscript. A. B., M. V., J. F.,
PREDICTING ADHERENCE TO EXERCISE

Copyright © 2022 by the American College of Sports Medicine
E. S., R. P., and N. G. performed data acquisition and substantial revi-
sion. S. W. G. analyzed and interpreted the data. C. H. designed the
data and performed substantial revision. E. M. carried out the concep-
tualization, study design, and substantial revision.

All data will be provided upon reasonable request to the corre-
sponding author, without reservation.
BA
SIC

SC
IEN

C
ES
REFERENCES
1. Gomes-Osman J, Cabral DF, Morris TP, et al. Exercise for cognitive

brain health in aging: a systematic review for an evaluation of dose.
Neurol Clin Pract. 2018;8(3):257–65.

2. DuY, Liu B, SunY, et al. Trends in adherence to the physical activity
guidelines for Americans for aerobic activity and time spent on sed-
entary behavior among US adults, 2007 to 2016. JAMA Netw Open.
2019;2(7):e197597.

3. Pratt M, Ramirez Varela A, Salvo D, et al. Attacking the pandemic of
physical inactivity: what is holding us back? Br J Sports Med. 2020;
54(13):760–2.

4. Ding D, Kolbe-Alexander T, Nguyen B, et al. The economic burden
of physical inactivity: a systematic review and critical appraisal. Br J
Sports Med. 2017;51(19):1392–409.

5. Brand R, Cheval B. Theories to explain exercise motivation and
physical inactivity: ways of expanding our current theoretical per-
spective. Front Psychol. 2019;10:1147.

6. McAuley E, Mullen SP, Szabo AN, et al. Self-regulatory processes
and exercise adherence in older adults: executive function and self-
efficacy effects. Am J Prev Med. 2011;41(3):284–90.

7. de Bruin M, Sheeran P, Kok G, et al. Self-regulatory processes medi-
ate the intention-behavior relation for adherence and exercise behav-
iors. Health Psychol. 2012;31(6):695–703.

8. Cadmus-Bertram L, IrwinM, Alfano C, et al. Predicting adherence of
adults to a 12-month exercise intervention. J Phys Act Health. 2014;
11(7):1304–12.

9. Arkkukangas M, Söderlund A, Eriksson S, et al. One-year adherence
to theOtagoExercise Programwith orwithoutmotivational interviewing
in community-dwelling older adults. J Aging Phys Act. 2018;26(3):390–5.

10. Flegal K, Kishiyama S, Zajdel D, et al. Adherence to yoga and exer-
cise interventions in a 6-month clinical trial. BMC Complement
Altern Med. 2007;7:37.

11. Burzynska AZ, Nagel IE, Preuschhof C, et al. Cortical thickness is
linked to executive functioning in adulthood and aging. Hum Brain
Mapp. 2011;33(7):1607–20.

12. Cheval B, Daou M, Cabral DAR, et al. Higher inhibitory control is
required to escape the innate attraction to effort minimization.
Psychol Sport Exerc. 2020;51:101781.

13. Cheval B, Orsholits D, Sieber S, et al. Relationship between decline
in cognitive resources and physical activity. Health Psychol. 2020;
39(6):519–28.

14. Best JR, Chiu BK, Hall PA, et al. Larger lateral prefrontal cortex vol-
ume predicts better exercise adherence among older women: evi-
dence from two exercise training studies. J Gerontol A Biol Sci
Med Sci. 2017;72(6):804–10.

15. Gujral S, McAuley E, Oberlin LE, et al. Role of brain structure in
predicting adherence to a physical activity regimen. Psychosom
Med. 2018;80(1):69–77.

16. Audiffren M, André N. The exercise–cognition relationship: a virtu-
ous circle. J Sport Health Sci. 2019;8(4):339–47.

17. Stern Y, Barnes CA, Grady C, et al. Brain reserve, cognitive reserve,
compensation, and maintenance: operationalization, validity, and mech-
anisms of cognitive resilience. Neurobiol Aging. 2019;83:124–9.

18. Yeo BT, Krienen FM, Sepulcre J, et al. The organization of the hu-
man cerebral cortex estimated by intrinsic functional connectivity. J
Neurophysiol. 2011;106(3):1125–65.

19. Grady C, Sarraf S, Saverino C, et al. Age differences in the functional
interactions among the default, frontoparietal control, and dorsal at-
tention networks. Neurobiol Aging. 2016;41:159–72.
20. Marek S, Dosenbach NUF. The frontoparietal network: function,
electrophysiology, and importance of individual precision mapping.
Dialogues Clin Neurosci. 2018;20(2):133–40.

21. Spreng RN, Sepulcre J, Turner GR, et al. Intrinsic architecture un-
derlying the relations among the default, dorsal attention, and
frontoparietal control networks of the human brain. J Cogn Neurosci.
2013;25(1):74–86.

22. Saghayi M, Greenberg J, O’Grady C, et al. Brain network topology
predicts participant adherence to mental training programs. Netw
Neurosci. 2020;4(3):528–55.

23. Gabrieli JDE, Ghosh SS, Whitfield-Gabrieli S. Prediction as a hu-
manitarian and pragmatic contribution from human cognitive neuro-
science. Neuron. 2015;85(1):11–26.

24. Yarkoni T, Westfall J. Choosing prediction over explanation in psy-
chology: lessons from machine learning. Perspect Psychol Sci. 2017;
12(6):1100–22.

25. Rejeski WJ, Miller ME, King AC, et al. Predictors of adherence to
physical activity in the lifestyle interventions and Independence for
elders pilot study (LIFE-P). Clin Interv Aging. 2007;2(3):485–94.

26. Rhodes RE, Martin AD, Taunton JE. Temporal relationships of self-
efficacy and social support as predictors of adherence in a 6-month
strength-training program for older women. Percept Mot Skills.
2001;93(3):693–703.

27. Olsen JM, Nesbitt BJ. Health coaching to improve healthy lifestyle
behaviors: an integrative review. Am J Health Promot. 2010;25(1):
e1–12.

28. Nahum-Shani I, Smith SN, Spring BJ, et al. Just-in-time adaptive in-
terventions (JITAIs) in mobile health: key components and design
principles for ongoing health behavior support. Ann Behav Med.
2018;52(6):446–62.

29. Madigan CD, FongM, Howick J, et al. Effectiveness of interventions
to maintain physical activity behavior (device-measured): systematic
review and meta-analysis of randomized controlled trials. Obes Rev.
2021;22(10):e13304.

30. Fanning J, Porter G, Awick EA, et al. Replacing sedentary time with
sleep, light, or moderate-to-vigorous physical activity: effects on self-
regulation and executive functioning. J Behav Med. 2017;40(2):332–42.

31. Voss MW, Weng TB, Burzynska AZ, et al. Fitness, but not physical
activity, is related to functional integrity of brain networks associated
with aging. Neuroimage. 2016;131:113–25.

32. Salthouse TA, Ferrer-Caja E. What needs to be explained to account
for age-related effects on multiple cognitive variables? Psychol Ag-
ing. 2003;18(1):91–110.

33. Storsve AB, Fjell AM, Tamnes CK, et al. Differential longitudinal
changes in cortical thickness, surface area and volume across the
adult life span: regions of accelerating and decelerating change. J
Neurosci. 2014;34(25):8488–98.

34. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: A functional connec-
tivity toolbox for correlated and anticorrelated brain networks. Brain
Connect. 2012;2(3):125–41.

35. FitzhughMC, Hemesath A, Schaefer SY, et al. Functional connectiv-
ity of Heschl’s gyrus associated with age-related hearing loss: a
resting-state fMRI study. Front Psychol. 2019;10:2485.

36. Pistono A, Guerrier L, Péran P, et al. Increased functional connectiv-
ity supports language performance in healthy aging despite gray mat-
ter loss. Neurobiol Aging. 2021;98:52–62.

37. Vieira BH, Rondinoni C, Garrido Salmon CE. Evidence of regional
associations between age-related inter-individual differences in
Medicine & Science in Sports & Exercise® 1491

. Unauthorized reproduction of this article is prohibited.



BA
SI
C
SC

IE
N
C
ES
resting-state functional connectivity and cortical thinning revealed
through a multi-level analysis. Neuroimage. 2020;211:116662.

38. Van Dijk KR, Hedden T, Venkataraman A, et al. Intrinsic functional
connectivity as a tool for human connectomics: theory, properties,
and optimization. J Neurophysiol. 2010;103(1):297–321.

39. Siegel JS, Mitra A, Laumann TO, et al. Data quality influences ob-
served links between functional connectivity and behavior. Cereb
Cortex. 2017;27(9):4492–502.

40. Behzadi Y, RestomK, Liau J, et al. A component based noise correc-
tion method (CompCor) for BOLD and perfusion based fMRI.
Neuroimage. 2007;37(1):90–101.

41. Schaefer A, Kong R, Gordon EM, et al. Local-global parcellation of
the human cerebral cortex from intrinsic functional connectivity
MRI. Cereb Cortex. 2018;28(9):3095–114.

42. Vogel JW, Vachon-Presseau E, Pichet Binette A, et al. Brain proper-
ties predict proximity to symptom onset in sporadic Alzheimer’s dis-
ease. Brain. 2018;141(6):1871–83.

43. Power JD, Schlaggar BL, Lessov-Schlaggar CN, et al. Evidence for
hubs in human functional brain networks. Neuron. 2013;79(4):
798–813.

44. Shen X, Finn ES, Scheinost D, et al. Using connectome-based predic-
tive modeling to predict individual behavior from brain connectivity.
Nat Protoc. 2017;12(3):506–18.
1492 Official Journal of the American College of Sports Medicine

Copyright © 2022 by the American College of Sports Medicine
45. Mill RD, Winfield EC, Cole MW, et al. Structural MRI and functional
connectivity features predict current clinical status and persistence be-
havior in prescription opioid users.Neuroimage Clin. 2021;30:102663.

46. Bauer CCC, Rozenkrantz L, Caballero C, et al. Mindfulness training
preserves sustained attention and resting state anticorrelation between
default-mode network and dorsolateral prefrontal cortex: a random-
ized controlled trial. Hum Brain Mapp. 2020;41(18):5356–69.

47. Spreng RN, Stevens WD, Chamberlain JP, et al. Default network ac-
tivity, coupled with the frontoparietal control network, supports goal-
directed cognition. Neuroimage. 2010;53(1):303–17.

48. Erickson KI, Hillman C, Stillman CM, et al. Physical activity, cogni-
tion, and brain outcomes: a review of the 2018 physical activity
guidelines. Med Sci Sports Exerc. 2019;51(6):1242–51.

49. McGregorKM,CrossonB,Krishnamurthy LC, et al. Effects of a 12-week
aerobic spin intervention on resting state networks in previously
sedentary older adults. Front Psychol. 2018;9:2376.

50. Loprinzi PD, Herod SM, Cardinal BJ, et al. Physical activity and the
brain: a review of this dynamic, bi-directional relationship.Brain Res.
2013;1539:95–104.

51. Lockhart R, Taylor J, Tibshirani RJ, et al. A significance test for the
lasso. Ann Stat. 2014;42:413–68.

52. Lee JD, Sun DL, Sun Y, et al. Exact post-selection inference, with ap-
plication to the lasso. Ann Stat. 2016;44:907–27.
http://www.acsm-msse.org

. Unauthorized reproduction of this article is prohibited.

http://www.acsm-msse.org

